

Course Specification

— (Postgraduate)

Course Title: Calculus of Variations and Optimal control

Course Code: Math613

Program: Master of Science in Mathematics

Department: Mathematics

College: College of Science and Humanities

Institution: Prince Sattam Bin Abdulaziz University

Version: 2

Last Revision Date: Oct 2022

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	6
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	7
G. Specification Approval Data:	7

A. General information about the course:

1. Course Identification:

2. 00					
1. C	redit hours: (3 l	nours)			
2. C	ourse type				
A.	□University	□College	□ Department	□Track	
В.	⊠ Required		□Electi	ive	
3. L	evel/year at wh	ich this course i	s offered: (Mas	ter)	
4. C	ourse general D	escription:			
topics Probl	s. The second varia	tion and sufficient c and Lagrange Formul	conditions for an ext	ns. Hamilton-Jacobi e tremum. Formation pproach to Optimal (of optimal control
5. P	re-requirement	s for this course	(if any): NIL		
6. P	re-requirement	s for this course	e (if any): Nil		
7. C	ourse Main Obj	ective(s):			
	rovide various theori ems using vibrationa		Optimal Control and p	prepare the students	solve mathematical

2. 1	eaching	Mode:	(mark al	I that	appl	y)
------	---------	-------	----------	--------	------	----

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3 hours a week	100%
2	E-learning		
3	HybridTraditional classroomE-learning	Elearning: In case of suspension of regular classes due to any unforeseen eventualities	Not applicable
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures (16 X 2)	32
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial (16 X 1)	16
5.	Others (specify) (Office Hours – 16 X 1)	16
	Total	64

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Acquire knowledge about historical account for the theory, standard notations and simple formulations	K1	Class Room Lectures 2.Interactive sessions	1.Homework 2.Assignments
1.2	Able to describe modeling of simple optimal control problems such as Bolza, Mayer and Lagrange Formulation etc.	К3	3.Exclusive Office Hours for clearing doubts in small groups	3.Quiz 4.Mid Term and Final Exam
•••				
2.0	Skills			
2.1	Formulate simple problems in calculus of variations.	S1		1.Homework
2.2	Apply theory and techniques of calculus of variations and optimal control to solve certain control problems.	S1	Application oriented exercises during lectures and tutorial session.	2.Assignments3.Quiz4.Mid Term and Final Exam

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.3	Gain ability to use Analytical techniques of Calculus of variations, dynamic programming and the maximum principle etc. to solve real world problems.	S3		
2.4	Be able to apply Vibrational Approach to Optimal Control, Pontryagin Maximum Principle in solving mathematical problems	S1	Group discussion Application oriented exercises during lectures and tutorial session.	Application oriented take home assignment
3.0	Values, autonomy, and	d responsibility		
3.1	Work independently and in groups	V1	 Group and Individual discussion Interactive Session Brain storming 	Group and Individual Assignment Continuous Assessment

C. Course Content:

No	No List of Topics	
1.	General variations of a functional constrained extrema	6
2.	Euler equations. Hamilton	6
	Jacobi equation and related topics	6
4.	The second variation and sufficient conditions for an extremum	6
5.	Formation of optimal control Problems, Bolza, Mayer and Lagrange Formulation	6
6.	6. Vibrational Approach to Optimal Control	
7.	7. Pontryagin Maximum Principal	
8.	8. Dynamic programming	
	Total	48

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Mid Term Exam I	6	15%
2.	Quiz (Atleast 2 quiz)	4 & 10	10%
3.	Mid Term Exam II	13	15%
4.	Continuous Assessment – Homework, Assignment, Attendance etc.		10%
5.	End Semester Exam	17	50%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	 Troutman J. L., "Variational Calculus with Elementary Convexity", New York – NY: Springer– Verlag, ISBN: 9780387907710 Jacob Rubinstein. Thierry Miquel. Introduction to Optimal Control. Master. Introduction to optimal control, ENAC, France. 2022, pp.188. ffhal-02987731v2f
Supportive References	NII
Electronic Materials	https://cel.hal.science/hal-02987731v2
Other Learning Materials	Lecture Notes Prepared by the Department of Mathematics

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms with Smartboards with seating facilities for at least 30 students
Technology equipment (Projector, smart board, software)	 Smartboard, Internet Connection for Blackboard
Other equipment (Depending on the nature of the specialty)	

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students Peer Review/Class Room Observation	Indirect
Effectiveness of students assessment	Independent member teaching staff	Check marking by an independent member teaching staff of samples of student work.
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Faculty Member Quality Unit of College and department	Direct Learning outcomes assessment.
Other	-	

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	
REFERENCE NO.	
DATE	SEP 2024

