





## **Course Specification**

- (Bachelor)

**Course Title: Discrete Mathematics** 

Course Code: Math 639

**Program: M Sc Mathematics** 

**Department: Mathematics** 

**College: College of Science and Humanities** 

**Institution: Prince Sattam Bin Abdulaziz University** 

**Version: Version 1** 

Last Revision Date: Jan 2025



## **Table of Contents**

| A. General information about the course:                                       | 3 |
|--------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods | 4 |
| C. Course Content                                                              | 4 |
| D. Students Assessment Activities                                              | 5 |
| E. Learning Resources and Facilities                                           | 5 |
| F. Assessment of Course Quality                                                | 6 |
| G. Specification Approval                                                      | 6 |





#### A. General information about the course:

| - | _    |     |     |    |    |     |    | - • |    |   |
|---|------|-----|-----|----|----|-----|----|-----|----|---|
| 1 |      | ur! | 0.5 | ıa | nt | 100 | (2 | 41  | 0  | n |
|   | <br> |     | ~   |    |    |     |    |     | ., | - |

| 1. C | 1. Credit hours: (3)                          |                  |                     |             |                                                 |  |  |  |
|------|-----------------------------------------------|------------------|---------------------|-------------|-------------------------------------------------|--|--|--|
|      |                                               |                  |                     |             |                                                 |  |  |  |
| 2. C | 2. Course type                                |                  |                     |             |                                                 |  |  |  |
| A.   | □ University                                  | □College         | ☑ Department        | □Track      | □Others                                         |  |  |  |
| В.   | ⊠ Required                                    |                  | □Elect              | tive        |                                                 |  |  |  |
| 3. L | evel/year at wh                               | ich this cours   | e is offered: (Post | : Graduate) |                                                 |  |  |  |
| 4. C | ourse General <b>E</b>                        | Description:     |                     |             |                                                 |  |  |  |
| recu |                                               | Graph – Euler an | d Hamiltonean Path  | •           | tructural induction –<br>l their Applications – |  |  |  |
| 5. P | 5. Pre-requirements for this course (if any): |                  |                     |             |                                                 |  |  |  |
| None |                                               |                  |                     |             |                                                 |  |  |  |
| 6. C | o-requisites for                              | this course (if  | any):               |             |                                                 |  |  |  |
|      | None                                          |                  |                     |             |                                                 |  |  |  |

#### 7. Course Main Objective(s):

To train the students in designing algorithm, graph theory, structural induction. Lattices, Boolean Algebra and their application to Computer Architecture

#### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                                     | 48            | 100%       |
| 2  | E-learning                                                                | -             | -          |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> | -             | -          |
| 4  | Distance learning                                                         | -             | -          |

#### 3. Contact Hours (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures (16 X 3) | 48            |
| 2. | Laboratory/Studio | -             |





| 3.    | Field            | -  |
|-------|------------------|----|
| 4.    | Tutorial         | -  |
| 5.    | Others (specify) | -  |
| Total |                  | 48 |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning<br>Outcomes                                                   | Code of<br>CLOs<br>aligned<br>with<br>program | Teaching Strategies                                        | Assessment<br>Methods                     |
|------|-------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|-------------------------------------------|
| 1.0  | Knowledge and understand                                                      | ding                                          |                                                            |                                           |
| 1.1  | Understand the Principles of writing Algorithms                               | K1                                            | Class Bases Last                                           | Quiz                                      |
| 1.2  | Describe the use of Mathematical Induction Principles to formulate algorithms | K2                                            | Class Room Lectures Interactive Session                    | Homework Mid term exams Final Exam        |
| 2.0  | Skills                                                                        |                                               |                                                            |                                           |
| 2.1  | Apply the knowledge of trees and find their simple applications               | S2                                            | Application oriented exercise during lecture and tutorials | Application oriented take home assignment |
| 2.2  | Use Boolean Algebra to<br>Design using Logic Gates                            | S1                                            | iecture and tutorials                                      | Exams                                     |
| 3.0  | Values, autonomy, and res                                                     | ponsibility                                   |                                                            |                                           |
| 3.1  | Conducting scholarly or professional activities in an ethical manner          | V2                                            | Group Discussion Brain Storming                            | Oral Presentation Continuous Assessment   |

#### **C.** Course Content

| No | List of Topics                     | Contact Hours |
|----|------------------------------------|---------------|
| 1. | Algorithms and Growth of functions | 6             |
| 2. | Induction Principles               | 6             |
| 3. | Recurrence relations               | 6             |
| 4. | Introduction to Graphs             | 6             |
| 5. | Euler and Hamiltonean Path         | 6             |
| 6  | Trees                              | 6             |
| 7. | Lattices and Boolean Algebra       | 6             |





| 8. | Logic Gates | 6  |
|----|-------------|----|
|    | Total       | 48 |

#### **D. Students Assessment Activities**

| No | Assessment Activities *                                      | Assessment<br>timing<br>(in week no) | Percentage of Total Assessment Score |
|----|--------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 1. | Mid Term Exam I                                              | 6                                    | 15%                                  |
| 2. | Quiz (Atleast 2 quiz)                                        | 4 & 10                               | 10%                                  |
| 3. | Mid Term Exam II                                             | 13                                   | 15%                                  |
| 4. | Continuous Assessment, Homework, Assignment, Attendance etc. | Every week                           | 10%                                  |
| 5. | End Semester Exam                                            | 17                                   | 50%                                  |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

#### **E. Learning Resources and Facilities**

#### **1. References and Learning Resources**

| Essential References     | Discrete Mathematics and Its applications – Eighth Edition -     |  |  |
|--------------------------|------------------------------------------------------------------|--|--|
| LSSCIIII AI REIEI EIICES | Kenneth H. Rosen, LCCN 2018008740   ISBN 9781259676512 (         |  |  |
| Supportive References    | Discrete Mathematics – 3 <sup>rd</sup> edition – Schaum's Series |  |  |
| Electronic Materials     |                                                                  |  |  |
| Other Learning Materials | Lecture notes issued by the Department of Mathematics            |  |  |

## 2. Required Facilities and equipment

| Items                                                                           | Resources                                                                                                                                                                                        |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | <ul> <li>A classroom or lecture hall with whiteboard for<br/>25 students.</li> </ul>                                                                                                             |
| <b>Technology equipment</b> (projector, smart board, software)                  | <ul> <li>A digital image projection system with connection to desktop computer and laptop computer.</li> <li>High speed Internet connection.</li> <li>An instructor computer station.</li> </ul> |
| Other equipment                                                                 | None                                                                                                                                                                                             |
| (depending on the nature of the specialty)                                      |                                                                                                                                                                                                  |



## F. Assessment of Course Quality

| Assessment Areas/Issues                 | Assessor            | Assessment Methods                                               |
|-----------------------------------------|---------------------|------------------------------------------------------------------|
| Effectiveness of teaching               | Students, Graduates | Course Evaluation and<br>Program Evaluation Survey<br>(Indirect) |
| Effectiveness of<br>Students assessment | Program Leaders     | Peer review (Direct)                                             |
| Effectiveness of students' assessment   | Students            | Indirect                                                         |
| Quality of learning resources           | Students, Graduates | Indirect (Program Evaluation and Alumni Survey)                  |
| Other                                   | Faculty             | Indirect (Survey)                                                |

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)

**Assessment Methods (Direct, Indirect)** 

#### **G. Specification Approval**

| COUNCIL /COMMITTEE |          |
|--------------------|----------|
| REFERENCE NO.      |          |
| DATE               | OCT 2024 |

