

Course Specifications

Course Title:	NUMERICAL METHODS TO SOLVE PARTIAL DIFFERENTIAL EQUATIONS
Course Code:	MATH 4500
Program:	BACHELOR OF SCIENCE IN MATHEMATICS
Department:	MATHEMATICS
College:	COLLEGE OF SCIENCE AND HUMANITIES STUDIES
Institution:	PRINCE SATTAM BIN ABDULAZIZ UNIVERSITY

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	rror! Bookmark not defined.
2. Course Main Objective E	rror! Bookmark not defined.
3. Course Learning Outcomes	4
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Stram Methods	•
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	6
H. Specification Approval Data	6

A. Course Identification

1. Cr	redit hours: 04			
2. Co	2. Course type			
a.	University College Department X Others			
b.	Required Elective X			
3. Le	3. Level/year at which this course is offered: Elective			
4. Pr	e-requisites for this course (if any):			
	Math 3370, Math 4360			
5. Co-requisites for this course (if any):				
	NIL			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	Weekly 4 hrs	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture (14 x 3)	48
2	Laboratory/Studio	
3	Tutorial (14 x 2)	00
4	Others (specify) - Office Hours (14 X 5)	60
	Total	140

B. Course Objectives and Learning Outcomes

1. Course Description

Finite Differences: Elliptic Problems – Parabolic Problems – 2D Problems – Solution Methods – Iterative Methods – Multigrid Methods – Hyperbolic Problems – Finite Volumes: Linear Problems – Conservation Laws. Nonlinear Problems. Finite Elements: Variational Formulation – General Elliptic Problems – Overview –Parabolic Problems – Eigenvalue Problems. Integral Equations: Collocation and Galerkin Methods – Fast Solvers

2. Course Main Objective

The Objective is to make the students acquire skills to find numerical solution of partial differential equations using various techniques.

3. Course Learning Outcomes

	CLOs	
1	1 Knowledge and Understanding	
1.1	Have a thorough understanding about Iterative Method and Multigrid	K1,
	method of solving PDEs	
1.2	1.2 Understand the concept of finite element method	
2	2 Skills :	
2.1	Able to solve problems such as Hyperbolic problems, finite volumes,	S1
	Linear problems with conservation laws.	
2.2	Solve integral equations using Collocation and Galerkin methods.	S2

C. Course Content

No	No List of Topics	
1	Review of PDEs – Finite differences	4
2	Elliptic Problems – Parabolic Problems – 2 D Problems	6
3	Iterative Method	4
4	Multigrid Method	4
5	5 Hyperbolic Problems	
6	6 Finite Volumes: Linear Problems – Conservation Laws. Nonlinear Problems	
7	Finite Elements: Variational Formulation – General Elliptic Problems	4
8	Overview –Parabolic Problems	4
9	Eigenvalue Problems.	3
10	10 Integral Equations: Collocation and Galerkin Methods	
11	11 Fast Solvers	
	Total	48

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Have a thorough understanding about Iterative Method and Multigrid method of solving PDEs	 Class Room Lectures Interactive sessions 	1.Two InternalExams2.Atleast twoQuiz
1.2	Understand the concept of finite element method	3. Exclusive Office Hours for clearing doubts in small groups	3. End Semester Exam
2.0	Skills		
2.1	Able to solve problems such as Hyperbolic problems, finite volumes, Linear problems with conservation laws.	1. Application oriented exercises during tutorial session.	 Homework Assignments Quiz

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.2	Solve integral equations using Collocation and Galerkin methods.	2. Homework to improve the analytical skills	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Mid Term Exam I	6	20%
2	Quiz	4 & 10	5%
3	Mid Term Exam II	13	20%
4	Continuous Assessment – Homework, Assignment,		5%
4	Attendance etc.		
5	End Semester Exam (Practical 10%, Theory 40%)	15	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

- 1. Exclusive Office Hours 5 Hours per week
- 2. Academic Advising for Students 1 Hour per week

F. Learning Resources and Facilities

1. Learning Resources		
Required Textbooks	 Trefethen L. N. and Bau D., "Numerical Linear Algebra", Philadelphia, PA: SIAM, (1997). ISBN: 9780898713619. Levecque R., "Numerical Methods for Conservation Laws", Lectures in Mathematics, ETH Zurich, Birkhauser. Quarteroni A. and Valli A., "Numerical Approximation of Partial Differential Equations", Berlin; New York, NY: Springer– Verlag, (1997), ISBN: 9783540571117. Atkinson K. E., "The Numerical Solution of Integral Equations of the Second Kind", Cambridge, UK: Cambridge University Press (1997), ISBN: 9780521583916. 	
Essential References Materials	Higher Engineering Mathematics by BS Grewal – SS Chand – Delhi – India	
Electronic Materials	s NIL	
Other Learning Materials	Lecture Notes Prepared by the Department of Mathematics	

1. Learning Resources

2. Facilities Required

Item	Resources	
Accommodation	 Classrooms with Smart boards with seating facilities for atleast 30 students 	

Item	Resources
(Classrooms, laboratories, demonstration rooms/labs, etc.)	
Technology Resources (AV, data show, Smart Board, software, etc.)	Smartboard, Internet Connection for Blackboard
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	NIL

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching	Students, Graduates	Course Evaluation and Program Evaluation Survey (Indirect)
	Program Leaders	Peer Review (Direct)
Achievement of CLOs	Faculty and Quality Personnel	Direct (Tests and Quiz) and Review of Course Report
Quality of Learning	Students	Course Evaluation (Indirect)
Resources	Graduates	Program Evaluation(Indirect)
Facilities	Students / Graduates	Course and Program Evaluation (Indirect)
	Faculty	Faculty Survey (Indirect), Course Reports (Direct)

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	